

JC-003-1016033 Seat No. \_\_\_\_\_

## B. Sc. (Sem. VI) (CBCS) Examination

**August - 2019** 

603: Physics

(New Course)

Faculty Code: 003

Subject Code: 1016033

| $\operatorname{Time}$ | $: 2\frac{1}{2}$                   | Hours] [Total Marks :                                                                                                   | 70 |  |  |
|-----------------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----|--|--|
| Instr                 | ructio                             | ns: (1) All questions are compulsory.  (2) Symbols have their usual meanings.  (3) Figures to the right indicate marks. |    |  |  |
| 1                     | (A) Answer the following in short: |                                                                                                                         |    |  |  |
|                       | (                                  | 1) Who introduced the concept of spinning electron?                                                                     |    |  |  |
|                       | (:                                 | 2) Band Spectra is also known as spectra.                                                                               |    |  |  |
|                       | ;)                                 | B) Which type of spectra are also known as fluted spectra?                                                              |    |  |  |
|                       | (4                                 | The orbital quantum number $(\ell)$ defines of an orbit.                                                                |    |  |  |
|                       | (B) A                              | answer in brief : (Any <b>One</b> )                                                                                     | 2  |  |  |
|                       | (                                  | 1) Calculate the ionization potential for mercury atom corresponding to spectrum term $83408 cm^{-1}$ .                 |    |  |  |
|                       | (2                                 | Calculate the wavelength of light emitted by an atom excited to some higher state by $4V$ .                             |    |  |  |
|                       | (C) A                              | answer in detail : (Any <b>One</b> )                                                                                    | 3  |  |  |
|                       | (                                  | 1) Describe Franck-Hertz experiment.                                                                                    |    |  |  |
|                       | (2                                 | 2) Explain Stark effect.                                                                                                |    |  |  |
| JC-00                 | 03-101                             | 6033 1 1 [ Conto                                                                                                        | d  |  |  |

| (D)           |     | VV Y1 | te Notes on : (Any One)                                                                                                 | Э |
|---------------|-----|-------|-------------------------------------------------------------------------------------------------------------------------|---|
|               |     | (1)   | Explain Vector atom model and Normal Zeeman effect.                                                                     |   |
|               |     | (2)   | Explain classical interpretation of Normal Zeeman effect.                                                               |   |
| 2             | (A) | Ans   | wer the following in short:                                                                                             | 4 |
|               |     | (1)   | In Raman spectra, the lines of the same frequency as the incident light are known as lines.                             |   |
|               |     | (2)   | Write the range of Raman shift.                                                                                         |   |
|               |     | (3)   | The molecular spectrum is also known asspectrum.                                                                        |   |
|               |     | (4)   | A diatomic molecule has rotational motion as well as motion.                                                            |   |
|               | (B) | Ans   | wer in brief : (Any <b>One</b> )                                                                                        | 2 |
|               |     | (1)   | The exciting line in a Raman experiment is 5460 Å and stokes line is at 5520 Å Find the wavelength of antistokes lines. |   |
|               |     | (2)   | The moment of inertia of the CO molecule is $1.46 \times 10^{-46} \ kgm^2$ . Calculate the energy in eV.                |   |
|               | (C) | Ans   | wer in detail : (Any <b>One</b> )                                                                                       | 3 |
|               |     | (1)   | Compare Raman spectra and Flourescence spectra.                                                                         |   |
|               |     | (2)   | Explain the theory of electronic spectrum.                                                                              |   |
|               | (D) | Wri   | te Notes on : (Any <b>One</b> )                                                                                         | 5 |
|               |     | (1)   | Explain the experimental arrangement for observing Raman Effect.                                                        |   |
|               |     | (2)   | Explain pure rotational spectrum and derive the necessary equations.                                                    |   |
| JC-003-101603 |     |       | · -                                                                                                                     | £ |

| 3   | (A)                                    | Answer the following in short: |                                                     |   |
|-----|----------------------------------------|--------------------------------|-----------------------------------------------------|---|
|     |                                        | (1)                            | Give the full form of LASER.                        |   |
|     |                                        | (2)                            | Which are the three processes that can occur when   |   |
|     |                                        |                                | a photon travels through a medium?                  |   |
|     |                                        | (3)                            | Define population inversion.                        |   |
|     |                                        | (4)                            | What is the ratio of He: Ne in HeNe laser?          |   |
|     | (B)                                    | Ans                            | wer in brief : (Any <b>One</b> )                    | 2 |
|     |                                        | (1)                            | At what temperature are the rates of spontaneous    |   |
|     |                                        |                                | and stimulated emissions equal, for a wavelength    |   |
|     |                                        |                                | $\lambda = 5000 \mathring{A}$ ?                     |   |
|     |                                        | (2)                            | The emitted laser light has a wavelength 6000Å      |   |
|     |                                        | ` /                            | and the coefficient of spontaneous emission is      |   |
|     |                                        |                                | $10^6/s$ . Determine the coefficient for stimulated |   |
|     |                                        |                                | emission. [Take $\mu = 1$ ].                        |   |
|     |                                        |                                | emission. [Take $\mu - 1$ ].                        |   |
|     | (C)                                    | Ans                            | wer in detail : (Any <b>One</b> )                   | 3 |
|     |                                        | (1)                            | Explain the condition for stimulated emission to    |   |
|     |                                        |                                | dominate spontaneous emission.                      |   |
|     |                                        | (2)                            | Explain LIDAR.                                      |   |
|     | (D)                                    | Write Notes on : (Any One)     |                                                     |   |
|     |                                        | (1)                            | Explain the principle of holography.                |   |
|     |                                        | (2)                            | Explain the construction and working of Ruby        |   |
|     |                                        |                                | laser.                                              |   |
| 4   | (A)                                    | Ans                            | wer the following in short:                         | 4 |
|     |                                        | (1)                            | Who discovered X-rays?                              |   |
|     |                                        | (2)                            | Write the properties of the target material in      |   |
|     |                                        |                                | Coolidge tube.                                      |   |
|     |                                        | (3)                            | Write the types of X-ray spectra.                   |   |
|     |                                        | (4)                            | Write the expression for Bragg's law.               |   |
|     | (B) Answer in brief: (Any <b>One</b> ) |                                |                                                     |   |
|     |                                        | (1)                            | Calculate the minimum voltage that must be          |   |
|     |                                        |                                | applied to an X-ray tube to produce X-ray photons   |   |
|     |                                        |                                | of wavelength $\lambda = 1 \text{ Å}$               |   |
|     |                                        | (2)                            | Find the wavelength of second order X-rays          |   |
|     |                                        | ` /                            | reflected by NaCI crystal at an angle of 4.5°. The  |   |
|     |                                        |                                | grating element of NaCI crystal is 2.81 Å.          |   |
| JC- | 003-1                                  | 01603                          | 33 ] 3 [ Cont                                       | d |

|     | (C) | Answer in detail : (Any One)                                                                                      | 3                  | 3 |
|-----|-----|-------------------------------------------------------------------------------------------------------------------|--------------------|---|
|     |     | (1) Write any six properties of X-ra                                                                              | ys.                |   |
|     |     | (2) Explain Laue method of diffract                                                                               | ion of X-rays.     |   |
| (D) |     | Write Notes on : (Any One)                                                                                        |                    | , |
|     |     | (1) Give the construction and work tube.                                                                          | ring of Coolidge   |   |
|     |     | (2) State and prove Bragg's law.                                                                                  |                    |   |
| 5   | (A) | Answer the following in short:                                                                                    | 4                  | c |
|     |     | (1) Give equation of Snell's law.                                                                                 |                    |   |
|     |     | (2) What are the different types of                                                                               | modes?             |   |
|     |     | (3) What is critical angle?                                                                                       |                    |   |
|     |     | (4) Write the expression for fractional                                                                           | refractive index.  |   |
| (B) |     | Answer in brief: (Any One)                                                                                        | 2                  | ) |
|     |     | (1) What is the numerical aperture o cable with a clad index of 1.277 of 1.872?                                   | _                  |   |
|     |     | (2) Calculate the fractional index chaptical fibre, if the refractive index cladding are 1.563 and 1.498 research | lices of core and  |   |
|     | (C) | Answer in detail : (Any One)                                                                                      | 3                  | ; |
|     |     | (1) Explain optical fibre in detail.                                                                              |                    |   |
|     |     | (2) Give six merits of fibre optics.                                                                              |                    |   |
|     | (D) | Write Notes on : (Any <b>One</b> )                                                                                |                    | , |
|     |     | (1) Explain different types of optical                                                                            | l fibre in detail. |   |
|     |     | (2) Explain the application of a communication system.                                                            | fibre optics in    |   |
|     |     |                                                                                                                   |                    |   |

4

JC-003-1016033 ]

[ 100 ]